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Abstract 

Background 
and Aims 

Physical inactivity, sedentary behaviour (SB), and inadequate sleep are key behavioural risk factors of cardiometabolic diseases. 
Each behaviour is mainly considered in isolation, despite clear behavioural and biological interdependencies. The aim of this 
study was to investigate associations of five-part movement compositions with adiposity and cardiometabolic biomarkers.  

Methods Cross-sectional data from six studies (n = 15 253 participants; five countries) from the Prospective Physical Activity, Sitting 
and Sleep consortium were analysed. Device-measured time spent in sleep, SB, standing, light-intensity physical activity 
(LIPA), and moderate-vigorous physical activity (MVPA) made up the composition. Outcomes included body mass index 
(BMI), waist circumference, HDL cholesterol, total:HDL cholesterol ratio, triglycerides, and glycated haemoglobin 
(HbA1c). Compositional linear regression examined associations between compositions and outcomes, including modelling 
time reallocation between behaviours.   

* Corresponding author. Email: m.hamer@ucl.ac.uk 
† The last two authors are joint senior authors. 
‡ ProPASS collaboration: Nidhi Gupta, Coen Stehouwer, Hans Savelberg, Bastiaan de Galan, Carla van de Kallen, and Dick H.J. Thijssen. 
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non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com  
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Results The average daily composition of the sample (age: 53.7 ± 9.7 years; 54.7% female) was 7.7 h sleeping, 10.4 h sedentary, 3.1 h 
standing, 1.5 h LIPA, and 1.3 h MVPA. A greater MVPA proportion and smaller SB proportion were associated with better 
outcomes. Reallocating time from SB, standing, LIPA, or sleep into MVPA resulted in better scores across all outcomes. For 
example, replacing 30 min of SB, sleep, standing, or LIPA with MVPA was associated with −0.63 (95% confidence interval 
−0.48, −0.79), −0.43 (−0.25, −0.59), −0.40 (−0.25, −0.56), and −0.15 (0.05, −0.34) kg/m2 lower BMI, respectively. Greater 
relative standing time was beneficial, whereas sleep had a detrimental association when replacing LIPA/MVPA and positive 
association when replacing SB. The minimal displacement of any behaviour into MVPA for improved cardiometabolic health 
ranged from 3.8 (HbA1c) to 12.7 (triglycerides) min/day.  

Conclusions Compositional data analyses revealed a distinct hierarchy of behaviours. Moderate-vigorous physical activity demonstrated 
the strongest, most time-efficient protective associations with cardiometabolic outcomes. Theoretical benefits from reallo-
cating SB into sleep, standing, or LIPA required substantial changes in daily activity.  

Structured Graphical Abstract   

How is movement behaviour (sleep, sedentary behaviour, standing, various intensity levels of activity) across the 24-hour period
associated with cardiometabolic outcomes?

Cross-sectional device-measured data from six studies showed a clear hierarchy of favourable movement behaviours across the 24-hour 
period. Redistribution of time from sedentary behaviour to moderate-vigorous physical activity was most strongly associated with
healthier cardiometabolic outcomes.

Compositional data analyses reveal a distinct hierarchy of behaviours. Theoretical benefits from reallocating physical behaviours requires 
substantial changes in daily activity.

Key Question

Key Finding

Take Home Message

24
hours

HDL
HDL
LDL

Key variablesStudy sample

Key �ndings

Thigh-worn measured
5 movement behaviours

Adiposity, lipids and
HbA1c (6 outcomes)

There was a clear hierarchy of behaviours
that was associated with better
cardiometabolic outcomes

Moderate to vigorous
physical activity

What if you replace 30 min of...

-0.63 (95%CI -0.48, -0.79)

Estimated reduction in
BMI (kg/m2)

-0.43 (95%CI -0.25, -0.59)

...with...

-0.40 (95%CI -0.25, -0.56)

-0.15 (95%CI 0.05, -0.34)

Light intensity
physical activity

Sleeping
or standing

Sedentary
behaviour

BMI

This study estimated how outcomes could change, if time spent
in one behaviour was directly replaced with time spent in another. 
An example of modelling the impact of reallocation on BMI:

6 cohort studies
5 countries
15000+ participants

1 2

Hierarchy of favourable movement behaviours across the 24 h day suggests more time spent in moderate-vigorous physical activity and less time 
spent sedentary are most strongly associated with healthier cardiometabolic outcomes. BMI, body mass index; HbA1c, glycated haemoglobin.  

Keywords Cohort consortium • Cardiometabolic outcomes • Physical activity • Sedentary behaviour • Sleep • Standing • 
Compositional data analysis   
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Introduction 
Cardiometabolic diseases—including cardiovascular disease (CVD), obes-
ity, and diabetes mellitus—are the leading cause of mortality worldwide.1,2 

The global burden of these diseases has risen over the past three decades, 
with annual CVD-related deaths increasing from 12.1 to 18.6 million, while 
diabetes-related deaths have doubled to 1.25 million.3–6 Concerningly, 
these trends are forecasted to continue.7–9 Positive engagement in health 
behaviours, such as physical activity, reducing sedentary behaviour (SB), 
and ensuring sufficient quality and quantity of sleep, can help prevent car-
diometabolic disease1,10 yet are largely underutilized. 

Regular moderate-vigorous physical activity (MVPA) has established 
cardiometabolic benefits via direct inflammatory, metabolic, or cardio-
vascular mechanisms.11,12 However, the effects of light-intensity phys-
ical activity (LIPA) are less clear.13 This may be due to poor 
ascertainment of LIPA using self-reported questionnaires14 or 
threshold-based approaches of hip or wrist-based accelerometery, 
which fail to distinguish between standing and subtle ambulatory activ-
ities.15 There is a strong argument against classifying passive standing as 
LIPA, given the very low energy expenditure involved.16 Finally, there is 
consistent evidence of associations between SB and increased cardio-
metabolic disease risk,17 while there is mixed evidence on the adverse 
effects of both short and long sleep durations.18,19 

Time spent in these daily movement behaviours (sleep, SB, standing, 
LIPA, MVPA) form a 24 h composition, with any change in one behav-
iour resulting in a corresponding increase or decrease in another. 
Until recently, controlled exercise trials and observational studies 
have mainly examined each behaviour in isolation.13,20 Assumptions 
that these behaviours are independent and that the 24 h day is infinite 
(e.g. effect estimates represent per 1 h increase in behaviour) can lead 
to potentially imprecise estimates that cannot be translated to real- 
world interventions or guidelines. Treating these data as a complete 
24 h day using compositional data analysis can overcome this limita-
tion.21 Previous evidence of movement compositions has suggested 
that more time in MVPA and less time in SB are associated with favour-
able health outcomes.22–24 However, these studies have largely relied 
upon small sample sizes, considered compositions with awake time 
only or incorporated self-reported sleep measures, and were unable 
to differentiate between sedentary and standing activity (i.e. due to wrist 
or hip worn accelerometers). 

The majority of current public health guidelines (i.e. WHO, USA, 
UK) focus solely on physical activity and SB.25,26 There is a clear need 
for better empirical evidence to support ‘24-hour’ guidelines27 and en-
compass recommendations on daily sleep, SB, and activity intensity vol-
ume. The Prospective Physical Activity, Sitting, and Sleep (ProPASS) 
consortium resource28 overcomes major limitations of previous litera-
ture22–24 by using harmonized individual-level data from six studies with 
thigh-worn accelerometery and a unified approach to derive 24 h 
movement behaviours. Our aim was to examine the associations be-
tween compositions of 24 h movement behaviours (defined as time 
spent in sleep, SB, standing, LIPA, MVPA) and six cardiometabolic out-
comes. Using the mean sample behavioural profile, we estimated the 
impact of reallocating time from one behaviour to another. 

Methods 
Sample 
ProPASS is an international research collaboration platform consisting of 15+ 
observational cohort studies with thigh-worn accelerometry.28 For this initial 
project, we included cross-sectional data from six participating studies: The 

Maastricht Study (TMS; The Netherlands, n = 7515),29 the 1970 British Birth 
Cohort Study (BCS70; UK, n = 5229),30 the Australian Longitudinal Study on 
Women’s Health (ALSWH; Australia, n = 941),31 the Danish PHysical 
ACTivity cohort with Objective measurements cohort (DPhacto; Denmark, 
n = 771),32 the Nijmegen Exercise Study (NES; The Netherlands, n = 537),33 

and the Finnish Retirement and Aging Study (FIREA; Finland, n = 253).34 

Ethical approval and informed consent were provided at the cohort level and 
included consent for future data analysis; an overview of each study is provided 
in Supplementary data online, Table S1 with complete study details available 
elsewhere.28–34 Data were physically pooled at the University of Sydney after 
signing all necessary data transfer agreements that adhered to cohort-specific 
requirements; this included harmonization of covariates and outcomes, as 
well as cleaning and processing of raw accelerometer data. 

Movement behaviours 
All cohorts collected movement behaviour data using a 7-day, 24 h/day 
thigh-worn accelerometer protocol; four studies used ActivPAL3/4 devices 
(BCS70, TMS, ALSWH, NES), one used Axivity devices (FIREA), and one 
used ActiGraph devices (DPhacto). Raw accelerometer data were centrally 
processed using previously validated software, ActiPASS v 1.32. ActiPASS 
identifies behaviours in 2 s windows with a 50% overlap, resulting in a reso-
lution of 1 s epochs, and implements algorithms for non-wear, sleep detec-
tion, posture, and activity intensity (intensity derived from cadence35–37). 
Compared with other device-based classification measures, ActiPASS has 
demonstrated excellent accuracy across wake time movement behaviours 
(>90%) and sleep (84%) and has been validated for use across different 
thigh-worn accelerometer brands.15,38–41 Five movement behaviours 
were classified: sleep, SB (sitting or lying episodes outside of sleep intervals), 
standing, LIPA (ambulatory movement without purposeful walking, walking 
with cadence <100 steps/min), and MVPA (running, cycling, inclined step-
ping, walking with cadence ≥100 steps/min).15,38–42 Participants with at 
least one valid wear day (≥20 h of wear/day), ≥1 period of walking detec-
tion, and >0 min of sleep were included in analyses. Time spent in each be-
haviour was calculated as average minutes/day. 

Cardiometabolic outcomes 
Two markers of adiposity were assessed by trained nurses or researchers 
during home or clinic-based visits: body mass index (BMI, kg/m2; calculated 
from height and weight) and waist circumference (cm). Cardiometabolic 
blood biomarkers were measured in five studies (not available in 
DPhacto) and included: HDL cholesterol (mmol/L), total:HDL cholesterol 
ratio, triglycerides (mmol/L), and glycated haemoglobin (HbA1c, mmol/mol; 
measured in ALSWH, BCS70, and TMS only). Measurement and assay 
methodology were similar across study, with consistently low coefficients 
of variation. Full details of outcome ascertainment by study, including assay 
details, are provided in Supplementary data online, Tables S2 and S3. 

Covariates 
Covariates were selected a priori based on data availability and known asso-
ciations with movement behaviours and cardiovascular outcomes.22–24 The 
following covariates were collected in all cohorts: age (years), sex (male, fe-
male), smoking status (non-smoker, current smoker), alcohol consumption 
(tertiles based on self-reported weekly consumption), self-rated health (five- 
point Likert scale), lipid-modifying, hypertensive or glucose-lowering medica-
tions (yes, no), history of CVD (yes, no), and fasting blood sample status 
(fasted, non-fasted; blood biomarker outcomes only). Additionally, a subset 
of cohorts collected data on mobility limitations (n = 4 cohorts; continuous 
score from 0 to 100 of the SF-36 10-item physical function subscale, where 
0 indicates poor mobility and 100 indicates no mobility problems), occupa-
tional class (n = 5 cohorts; not working, low, intermediate, high occupational 
class), and education (n = 4 cohorts; none or lower than high school, high 
school qualifications/typically attained at age 16 years, further education 
qualifications/typically attained at age 16–18 years, university degree, and 
higher/typically 18+ years). Full details of ascertainment and subsequent  
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harmonization of covariates in each cohort are provided in Supplementary 
data online, Table S2. 

Statistical analyses 
We define a composition as the average daily time spent in each of SB, sleep, 
standing, LIPA, and MVPA behaviours. First, average daily times are normal-
ized such that the sum of all behaviours is equivalent to 1440 min (24 h) to 
account for any non-wear or unrecognized time. The 24 h time compos-
ition is then expressed as a set of four isometric log-ratio (ilr) coordinates 
capturing information and variability of the relative time spent in each of the 
five behaviours. Briefly, the first coordinate describes the behaviour of 
interest relative to time spent in the other four behaviours, the second co-
ordinate describes the second behaviour relative to time spent in the other 
three, the third coordinate describes the third behaviour relative to time 
spent in the other two, and the fourth and final coordinate describes the 
fourth behaviour relative to time spent in the fifth. Inclusion of all four co-
ordinates in a single regression model allows the relation between all beha-
viours to be captured. We pivoted the data to create five sets of 
coordinates, which allows the investigation of the first coordinate (i.e. a sin-
gle movement behaviour relative to time spent in all other behaviours).43 

Therefore, we used the following set of ilr coordinates to capture time 
spent in all five behaviours: (i) SB compared with sleep, standing, LIPA, 
and MVPA; (ii) sleep compared with standing, LIPA, and MVPA; (iii) standing 
compared with LIPA and MVPA; and (iv) LIPA compared with MVPA. 
Further detail into this approach is available elsewhere.21,43 

We conducted a one-stage individual participant meta-analysis using lin-
ear regressions to examine associations of each behaviour relative to the 
others with each outcome, repeating the below models for each set of pi-
voted coordinates. Coefficients indicate the change in outcome (e.g. kg/m2 

or mmol/L) for each one-unit ilr increase. We tested for sex interactions be-
fore building models in two stages: (i) adjusted for sex, age, and cohort and 
(ii) adjusted for sex, age, cohort, smoking, alcohol, self-reported health, med-
ications, CVD history, and fasting status (blood biomarker outcomes only). 
Due to cohort-specific missing data, sex–age–cohort-adjusted models were 
examined in both the maximal available sample and those with complete 
covariate data. Maximal available sample refers to those with data on the 
movement composition and the outcome, whereas complete cases refer 
to those with data on the movement composition, outcome, and all covari-
ates. We repeated the models with additional adjustments for education, 
mobility limitations, and occupational class in cohorts with data on all three 
additional covariates (ALSWH, BCS70, and TMS). To provide results ready 
for translation to behavioural interventions, we conducted isotemporal sub-
stitution to model how reallocation of time from one behaviour to another 
—based on the mean 24 h behavioural profile—impacted each out-
come44,45 in sex–age–cohort-adjusted models. Clinically meaningful reduc-
tions were defined as a 5% reduction based on the referent BMI for the mean 
sample composition;46 minimal significant reductions were defined as a 
change in outcome using lower 95% confidence interval (CI) limits. 

We conducted several additional analyses stratifying by sex (females and 
males) and by MVPA level (low: <MVPA median; ≥MVPA median). As a sen-
sitivity analysis, we repeated both sex and adjusted models in a subset of in-
dividuals with 3 valid days of at least 23+ h/day, including 1 weekend day. 
Finally, we examined differences in movement behaviours and outcomes be-
tween those with complete covariate data and those missing data on one or 
more covariates. All analyses were performed in RStudio using the tidyverse, 
compositions, robCompositions, and zCompositions packages. 

Results 
Sample description 
Of 15 271 participants with valid accelerometer data on all 5 behaviours, 
15 253 (99.9%) had data on at least one outcome. Table 1 provides de-
scriptive characteristics of the sample for all movement behaviours, 

outcomes, and covariates. Briefly, 54.7% (n = 8341) of the sample 
were female, with a mean age of 53.7 years ± 9.7 (range: 18–87). The 
majority of the sample were non-smokers (85.4%), self-rated their 
health as good or better (87.2%), were not taking lipid-modifying, hyper-
tensive or glucose-lowering medications (70.1%), and had no history of 
CVD (90.2%). Average daily wear time across the wear period was 
22.8 h ± 1.8. The mean composition of the full sample, defined as the 
average time spent in each behaviour normalized to a 24 h day, was 
7.7 h sleeping, 10.4 h sedentary, 3.1 h standing, 1.5 h in LIPA, and 1.3 h 
in MVPA. Supplementary data online, Figure S1A demonstrates absolute 
differences in time spent in each movement behaviour by cohort, while  
Supplementary data online, Figure S1B provides percent differences 
compared with the overall mean sample composition. Inter-cohort dif-
ferences were largest for standing, LIPA, and MVPA, with comparable 
time spent in sleeping and SB. The maximal available sample in sex– 
age–cohort-adjusted models ranged from 11 270 (triglycerides; n =  
9450 complete cases) to 15 204 (BMI; n = 12 166 complete cases). 

Association between movement 
behaviours and adiposity 
A greater proportion of time spent sedentary was associated with high-
er BMI (see Supplementary data online, Table S4); conversely—and in 
order of size of association—more time engaging in MVPA, LIPA, stand-
ing, or sleep was associated with lower BMI. Associations were robust 
to adjustment for all covariates (Models 2 and 3, Supplementary data 
online, Tables S4 and S5). Reallocation of time from any behaviour 
into MVPA, while holding the others constant, had the largest theoret-
ical reduction in BMI (Figure 1). For example, reallocating 30 min of SB, 
sleep, standing, or LIPA into MVPA was associated with −0.63 (95% CI: 
−0.48, −0.79), −0.43 (95% CI: −0.25, −0.59), −0.40 (95% CI: −0.25, 
−0.56), or −0.15 (95% CI: 0.05, −0.34) kg/m2 lower BMI, respectively. 
Conversely, reallocating time from LIPA or MVPA into sleep, standing, 
or SB was associated with higher BMI (Figure 1A and B). The minimal 
daily behavioural change required to observe significant theoretical re-
ductions in BMI was displacement of 7.2 min of SB into MVPA. 

Associations were similar for waist circumference across MVPA, 
standing, sleep, and SB (Figure 2). Reallocating 30 min of SB, sleep, or 
standing into MVPA was associated with lower waist circumferences 
of −2.44 (95% CI: −1.97, −2.78), 1.75 (95% CI: −1.38, −2.22), and 
−1.34 (95% CI: −0.98, −1.78) cm, respectively. Although displacement 
of LIPA into MVPA remained favourable for waist circumference 
[30 min: −2.49 (−1.95, −2.94) cm], there was a negative association 
with waist circumference if time spent in LIPA replaced time spent 
sleeping or standing (Figure 2D). However, associations were attenu-
ated after adjustment for covariates (Models 2 and 3, Supplementary 
data online, Tables S4 and S5). The minimal behavioural change required 
to observe statistically significant theoretical reductions in waist circum-
ference was displacement of 5.0 min/day of LIPA into MVPA. A 5% re-
duction in BMI (−1.33 kg/m2) would be yielded if 64.8 (95% CI: 52.8, 
76.8) minutes or 1.78 (95% CI: 1.37, 2.38) hours of SB were reallocated 
into MVPA or LIPA, respectively. 

Association between movement 
behaviours and lipids 
A smaller proportion of time in SB and a greater proportion in MVPA 
was associated with higher HDL cholesterol, lower total:HDL choles-
terol ratio, and lower triglyceride levels (see Supplementary data 
online, Table S3; Figures 3–5A–E). For example, reallocation models sug-
gested that improvements were observed after as few as 6.0, 8.9, and  
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Table 1 Descriptive characteristics in maximal available sample (n = 15 253) 

Outcomes, mean ± SD Full sample Females Males 
(n = 15 253) (n = 8341; 54.7%) (n = 6912; 45.3%)   

BMI (kg/m2)  27.0 ± 4.9  26.7 ± 5.4  27.4 ± 4.3  

Waist circumference (cm)  94.1 ± 13.9  89.2 ± 13.2  100.2 ± 12.1  

HDL cholesterol (mmol/L) 1.57 ± 0.46  1.7 ± 0.5  1.4 ± 0.4  

HDL: total cholesterol ratio 3.64 ± 1.23  3.3 ± 1.0  4.0 ± 1.3  

HbA1c (mmol/mol) 38.0 ± 8.7  36.7 ± 7.3  39.4 ± 9.8  

Triglycerides (mmol/L)  1.48 ± 1.04  1.3 ± 0.8  1.7 ± 1.2 

Movement behaviour compositiona (h/day; % of day)  

Sleep 7.7 (31.9%) 7.9 (32.8%) 7.4 (30.9%)  

Sedentary behaviour 10.4 (43.2%) 9.9 (42.3%) 10.9 (45.4%)  

Standing 3.1 (13.0%) 3.3 (13.9%) 2.9 (11.9%)  

LIPA 1.5 (6.4%) 1.5 (6.3%) 1.6 (6.5%)  

MVPA 1.3 (5.5%) 1.4 (5.7%) 1.3 (5.3%) 

Main analyses covariates [mean ± SD or n (%)]  

Age (years)  53.7 ± 9.7  52.7 ± 9.1  55.1 ± 10.2  

Cohort   

TMS 7515 (49.3) 3790 (45.4) 3725 (53.9)   

BCS70 5236 (34.3) 2797 (33.5) 2439 (35.3)   

ALSWH 941 (6.1) 941 (11.3) 0 (0)   

DPhacto 777 (5.1) 359 (4.3) 412 (6.0)   

NES 537 (3.5) 244 (2.9) 293 (4.2)   

FIREA 253 (1.7) 210 (2.5) 43 (0.6)  

Smoking status   

Non-smoker 12 953 (85.4)  7205 (86.8)  5748 (83.7)   

Current smoker 2211 (14.6)  1093 (13.2)  1118 (16.3)  

Alcohol consumption   

Tertile 1 (low) 4463 (33.8)  3058 (42.6)  1405 (23.3)   

Tertile 2 4514 (34.2)  2529 (35.2)  1985 (32.9)   

Tertile 3 (high) 4231 (32.0)  1591 (22.2)  2640 (43.8)  

Self-reported healthb   

Excellent 1849 (12.3)  1102 (13.4)  747 (11.0)   

Very good 4905 (32.7)  2701 (32.9)  2204 (32.4)   

Good 6329 (42.2)  3337 (40.6)  2992 (44.1)   

Fair 1634 (10.9)  908 (11.1)  726 (10.7)   

Poor 287 (1.9)  164 (2.0)  123 (1.8)  

Medication (lipid-modifying, hypertensive, or glucose-lowering) 4333 (29.9)  1859 23.3)  2474 (38.1)  

History of CVD 1486 (9.8)  615 7.4)  871 (12.7)                                                                                                                                                                                                                   

Continued  
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Table 1 Continued  

Outcomes, mean ± SD Full sample Females Males 
(n = 15 253) (n = 8341; 54.7%) (n = 6912; 45.3%)  

Supplementary analyses covariatesc [mean ± SD or n (%)]  

Physical function (SF-36) 87.2 ± 18.8  86.5 ± 18.9  88.0 ± 18.6  

Occupational class   

Not working 3850 (29.3)  2014 (28.1)  1836 (30.6)   

Low 2152 (16.4)  1023 (14.3)  1129 (18.8)   

Intermediate 3645 (27.7)  1927 (26.9)  1718 (28.7)   

High 3502 (26.6)  2192 (30.6)  1310 (21.9)  

Education   

None or less than high school 1666 (11.9)  764 (9.9)  902 (14.2)   

High school (∼16 years) 3908 (27.8)  2209 (28.7)  1699 (26.7)   

Further education (∼16–18 years)  5399 (38.4)  2955 (38.4)  2444 (38.4)   

University degree or higher 3080 (21.9)  1760 (22.9)  1320 (20.7) 

ALSWH, Australian Longitudinal Study of Women’s Health; BMI, body mass index; BCS70, 1970 British Cohort Study; CVD, cardiovascular disease; DPhacto, Danish PHysical ACTivity 
cohort with Objective measurements; FIREA, Finnish Retirement and Aging Study; HDL, high density lipoprotein; LIPA, light-intensity physical activity; MVPA, moderate-vigorous intensity 
physical activity; NES, Nijmegen Exercise Study; SD, standard deviation; SF-36, Short-Form 36; TMS, The Maastricht Study. 
aRe-scaled to a 24 h day to create the composition. 
bResponse terminology differs slightly by cohort, given translation of original question (see Supplementary data online, Table S1). 
cCovariates available in restricted cohorts only (see Supplementary data online, Table S1).  

Figure 1 Substitution models (n = 15 204) for body mass index for (A) sedentary behaviour; (B) sleep; (C ) standing; (D) light intensity physical activity; 
(E) moderate-to-vigorous intensity physical activity. Data to the left of the reference line indicate the predicted change in body mass index if a given 
behaviour (e.g. sedentary behaviour in A) is replaced by each of the other four behaviours. Data to the right of the reference line indicate the predicted 
change in body mass index if a given behaviour (e.g. sedentary behaviour in A) replaces each of the other four behaviours. Model adjusted for sex (ref: 
female), age (ref: 53.7 years; mean-centred), and cohort (ref: Maastricht Study)   
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12.7 min of SB were replaced by MVPA (Figures 3–5E), respectively. 
Associations remained after adjustment for covariates (Models 2 and 
3, Supplementary data online, Tables S3 and S4). 

Beyond the beneficial impact of reallocating time from LIPA to MVPA, 
there was little evidence that LIPA displacement was associated with HDL 
or total:HDL cholesterol ratio (Figures 3–5D; Supplementary data online, 
Tables S3 and S4). Conversely, positive associations between a greater pro-
portion of time spent standing and favourable lipid outcomes remained 
across all outcomes and models. Standing was detrimental when displacing 
MVPA time but advantageous when replacing 1+ hour sleep or 1.75+ hour 
of SB (Figures 3–5C). Reallocating time between LIPA and standing—in ei-
ther direction—was negligible for HDL and total:HDL cholesterol ratio, 
while theoretical reductions in triglycerides level were observed after 
39 min of LIPA was displaced into standing. 

Finally, more time spent sleeping relative to other behaviours was as-
sociated with poorer lipid outcomes; however, this differed by dis-
placed behaviour (Figures 3–5B). When sleep displaced MVPA or 
standing time (Figures 4–6B), there were deleterious associations with 
all outcomes. For example, replacing 30 min of MVPA with sleep was 
associated with a −0.10 mmol/L (−0.08, −0.12), +0.17 (0.12, 0.21), 
and +0.13 mmol/L (0.08, 0.17) difference in HDL, total:HDL choles-
terol ratio, and triglycerides. Reallocation between sleep, SB, and 
LIPA was negligible, with a meaningful change in HDL only emerging 
after ∼1.5 h of displacement from SB to sleep (Figure 3B). 

Association between movement 
behaviours and HbA1c 
A greater proportion of time spent in MVPA, standing, or sleeping and a 
smaller proportion of time spent in SB were associated with lower 

HbA1c. Associations remained after adjustment for covariates (see  
Supplementary data online, Tables S3 and S4). Relative to other time re-
allocations, displacement of any other behaviour into MVPA was asso-
ciated with the most favourable estimates for HbA1c levels (Figure 6). 
When MVPA replaced 30 min spent in SB, sleep, standing, or LIPA, 
we observed lower HbA1c of 1.33 (1.06, 1.61), 1.12 (0.80, 1.40), 1.04 
(0.72, 1.36), and 2.00 (1.63, 2.37) mmol/mol, respectively (Figure 6E). 

Light-intensity physical activity was the most deleterious behaviour 
for HbA1c; e.g. a 30 min displacement of MVPA, standing, sleep, or 
SB into LIPA was associated with 2.33 (1.89, 2.77), 0.70 (0.31, 1.11), 
0.63 (0.29, 1.00), and 0.42 (0.11, 0.78) mmol/mol higher HbA1c, re-
spectively (Figure 6D). Note these displacement changes were observed 
in the age–sex–cohort models, but associations were attenuated after 
adjustment for covariates, most notably with the addition of physical 
limitations (Models 2and 3, Supplementary data online, Tables S3 and 
S4). While more time in SB was associated with higher HbA1c levels, 
with no impact of displacement between standing and sleeping 
(Figure 6A–C). The minimal daily behavioural change needed to observe 
a significant change in HbA1c was 3.8 min of MVPA displacing LIPA. A 
summary of all behavioural displacements across each outcome is pro-
vided in Supplementary data online, Table S6. 

Sex-stratified analyses 
Males spent more time sedentary (10.2 ± 1.9 vs. 9.3 ± 1.8 h/day), less 
time sleeping (6.9 ± 1.5 vs. 7.4 ± 1.3 h/day), and less time engaging in 
LIPA (4.5 ± 1.4 vs. 4.9 ± 1.5) and MVPA (1.2 ± 0.5 vs. 1.3 ± 0.5 h/day) 
than females (Table 1). Given poorer risk factors in males (i.e. lower 
HDL and higher BMI, waist circumference, HDL:total cholesterol ratio, 
HbA1c, and triglycerides) and greater time spent in unhealthy 

Figure 2 Substitution models (n = 14 541) for waist circumference outcome for (A) sedentary behaviour; (B) sleep; (C ) standing; (D) light intensity 
physical activity; (E) moderate to vigorous intensity physical activity. Model adjusted for sex (ref: female), age (ref: 53.7 years; mean-centred), and cohort 
(ref: Maastricht Study)   
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movement behaviours as well as potential sex differences in physio-
logical responses to exercise,47 we subsequently stratified by sex. 
Associations did not change, although there were larger associations 
between the movement compositions and outcomes in females (see  
Supplementary data online, Table S7 and Figures S2 and S3). For ex-
ample, associations between more time spent in LIPA or standing rela-
tive to other behaviours were attenuated for some outcomes in males, 
whereas reallocation models indicated steeper associations in females. 

Moderate-vigorous physical  
activity–stratified analyses 
Similarly, associations largely did not change when stratified by MVPA 
(low MVPA: <76.2 min/day; high MVPA: ≥76.2 min/day; see  
Supplementary data online, Table S8 and Figures S4 and S5), although 
associations between time spent in sleeping—relative to other 
behaviours—and poorer lipid outcomes weakened in stratified groups 
(see Supplementary data online, Table S8). Reallocation models 
indicated steeper associations in those with low MVPA, compared 
with those with high MVPA (see Supplementary data online, Figures 
S4 and S5). For example, in those with low MVPA, a 5% reduction in 
BMI (−1.38 kg/m2) would be yielded if 1.22 (95% CI: 0.93, 1.64) or 
1.29 (95% CI: 0.97, 1.67) hours of SB were reallocated into MVPA 
and LIPA, respectively. Conversely in those with high MVPA, a 5% re-
duction in BMI (−1.28 kg/m2) was outside of the modelled reallocation 
range for SB, MVPA, and LIPA (e.g. >1.5 h). 

Sensitivity analyses 
When analyses were repeated in a subset of individuals with greater ad-
herence to wear protocol (i.e. ≥3 valid wear days including ≥1 weekend 
day; maximal sample size ranging from n = 10 998 for triglycerides to 
n = 14 668 for BMI), results did not change (see Supplementary data 
online, Table S9). Compared with the complete cases sample (up to 
n = 12 193), those missing one or more covariate (n = 3047) had lower 
HDL cholesterol (1.48 ± 0.42 vs. 1.57 ± 0.47 mmol/L), lower HDL:to-
tal cholesterol ratio (3.61 ± 1.22 vs. 3.79 ± 1.28), higher triglycerides 
(1.53 ± 1.12 vs. 1.47 ± 1.02 mmol/L), and higher HbA1c (38.6 ± 9.8 
vs. 37.9 ± 8.6 mmol/mol) levels. However, adiposity measures were 
comparable, and there was no different in movement behaviour com-
positions (see Supplementary data online, Table S10). 

Discussion 
In this large individual participant data analysis of over 15 000 partici-
pants, we examined cross-sectional associations between device- 
measured 24 h movement behaviours and cardiometabolic health out-
comes. Our findings revealed a clear hierarchy of favourable movement 
behaviours across the 24 h day; MVPA was most strongly associated 
with healthier cardiometabolic outcomes. Using the mean 24 h behav-
ioural composition as a starting point (7.7 h sleeping, 10.4 h SB, 3.1 h 
standing, 1.5 h LIPA, and 1.3 h MVPA), we observed theoretical benefits 
across all outcomes when as little as 4–12 min/day were reallocated 
into MVPA. Conversely, a greater proportion of time spent sedentary 

Figure 3 Substitution models (n = 13 060) for HDL cholesterol outcome for (A) sedentary behaviour; (B) sleep; (C ) standing; (D) light intensity physical 
activity; (E) moderate to vigorous intensity physical activity. Model adjusted for sex (ref: female), age (ref: 53.7 years; mean-centred), and cohort (ref: 
Maastricht Study)   
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was detrimentally associated with all outcomes (Structured Graphical 
Abstract). More time spent in standing was favourably associated 
with outcomes, although there were inconsistent—and often null— 
associations for LIPA. Associations between sleep and biomarkers 
were complex, with an unfavourable association when sleep replaced 
any time spent active (MVPA, LIPA, and standing) and modest theoret-
ical benefits when it replaced SB. 

Hypothesized mechanisms 
The inflammatory, metabolic, or vascular mechanisms through which 
MVPA contributes to improved cardiovascular health are well estab-
lished.11,12 Our findings further suggest that even small changes in 
MVPA are associated with statistically significant and clinically meaning-
ful cardiometabolic benefits. This builds on recent evidence reporting 
that small amounts of daily vigorous physical activity (accumulated in 
<2 min bouts) are associated with lower mortality, cancer, and CVD 
risk.48,49 The acute benefits of standing on postprandial glucose re-
sponse may partially explain the small but significant associations ob-
served above.50,51 High muscle contractions involved in extended 
standing periods may also influence lipoprotein lipase activity, a key en-
zyme in glucose and lipid metabolism, and contribute to decreased in-
flammatory pathways.50,51 There were some positive associations of 
displacing SB or sleep into LIPA for BMI, but we largely observed null 
associations when examining other cardiometabolic biomarkers, which 
has been observed in other studies of device-measured LIPA and inci-
dent CVD.52–54 

Given the inclusion of fast walking in MVPA, there may have been 
some higher level LIPA classified as MVPA. In additional, higher levels 

of MVPA within the study sample is likely to be due to the inclusion 
short bursts of daily activity (e.g. taking the stairs, running for the 
bus) that is not typically captured in questionnaire-based physical activ-
ity assessment and may also be due to the younger and narrower age 
range as well as the overall health status of the cohort. Finally, there 
may be a ceiling effect of physical activity driven by high levels of 
MVPA in our active and healthy sample; specifically, if an individual 
with high levels of MVPA is engaging in additional LIPA above and be-
yond this, there may be little association with subsequent risk factors. 

Mechanisms underlying association between insufficient sleep or too 
much SB and poor cardiometabolic health often focus on indirect fac-
tors that lead to weight gain or decreased energy expenditure.55 

However, chronic sleep deprivation has also been linked to the modi-
fication of gene expression and lipoproteins involved in inflammatory 
and cholesterol pathways.56,57 Our findings suggest that any theoretical 
cardiometabolic benefits from increased sleep—beyond the reference 
composition of 7.7 h—are secondary to the direct physiological bene-
fits of physical activity. However, it is unclear how the effects of dis-
placing sleep and physical activity would differ in individuals with high 
levels of sleep deprivation. We hypothesize that individuals with insuf-
ficient sleep (i.e. <6 h) may benefit from prioritizing sleep over physical 
activity; the need for a more personalized approach to 24 h behaviour is 
further discussed below. 

Comparison to existing evidence 
Our study provides novel insights by distinguishing standing from ambu-
latory LIPA and identifying the minimal theoretical displacements be-
tween behaviours required to observe statistical associations with 

Figure 4 Substitution models (n = 13 059) for total:HDL cholesterol ratio outcome for (A) sedentary behaviour; (B) sleep; (C ) standing; (D) light inten-
sity physical activity; (E) moderate to vigorous intensity physical activity. Model adjusted for sex (ref: female), age (ref: 53.7 years; mean-centred), and 
cohort (ref: Maastricht Study)   
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cardiometabolic health outcomes. To our knowledge, this is the first 
study to suggest that more time spent in standing may be more bene-
ficial than LIPA for cardiometabolic outcomes. This must be inter-
preted with caution, given the likely inclusion of moderate fast-paced 
walking in MVPA rather than LIPA and the lack of context on the active 
or passive nature of the standing behaviour (e.g. stationary resistance 
training, standing desk, waiting for a bus). Further research must inves-
tigate how context and the cognitive and musculoskeletal demands of 
standing and LIPA activities impact cardiometabolic health. Previous 
compositional studies have identified the benefits of MVPA and the det-
rimental consequences of SB for various health outcomes22–24; how-
ever, these studies reported inconsistent evidence regarding the role 
of sleep or LIPA activity on cardiometabolic outcomes, which may 
have been due to inadequate ascertainment of sleep using self-reported 
data.22 

Implications 
Our findings have substantial implications from both research and clin-
ical perspectives. First, they underscore the importance of MVPA 
across different adiposity and cardiometabolic biomarker outcomes. 
Our modelled reallocation suggests that population-level benefits can 
theoretically be observed after relatively short displacements of time 
(e.g. replacing other behaviour with 4–12 min of MVPA). However, it 
is crucial to examine if these effect sizes can be replicated in longitudinal 
observational or interventional studies that use posture-based acceler-
ometer data. Recently, there have been increased public recommenda-
tions on the ‘sit less, move more’ approach that highlights benefits of 

any level of physical activity, including LIPA, for reduced mortality risk 
and improved cardiovascular health.58–60 However, given more subtle 
cardiovascular adaptations resulting from LIPA compared with 
MVPA,61 the benefits of lighter activities may be more meaningful for 
mental health or musculoskeletal outcomes62,63 rather than cardiome-
tabolic outcomes. The findings here reaffirm the importance of the in-
tensity of the activity that is replacing SB; our models suggest that 
replacing 30 min of SB with MVPA rather than LIPA result in substan-
tially better cardiometabolic outcomes. It was notable that replacing SB 
with standing had positive associations across all outcomes, a finding 
that highlights potential intervention opportunities aimed at minimizing 
sitting or targeting groups who have challenges engaging in MVPA (i.e. 
those in poorer health, those with few occupational opportunities). 
Nevertheless, it is crucial finding a balance between increasing time 
spent in higher intensity activities and decreasing time spent sedentary. 
For example, data from the National Health and Nutrition 
Examinations Survey suggest comparable mortality risk between meet-
ing US physical activity guidelines or by an additional 2.5 min of MVPA 
to ‘offset’ every 1 h of SB.23 Therefore, optimal cardiometabolic out-
comes can be achieved most efficiently if MVPA is specifically targeted. 

Findings must be interpreted at the population level as the starting 
point for all reallocation plots is the mean sample composition, which 
has relatively high levels of sleep (7.7 h/day), standing (3.1 h/day), and 
MVPA (1.3 h/day). Displacement into and away from MVPA did not 
demonstrate symmetrical associations with outcomes (Figures 1–6), 
and as introduced above, outcomes resulting from behavioural changes 
are likely to diverge depending on the initial starting profile. For ex-
ample, previous investigation of dose-response associations between 

Figure 5 Substitution models (n = 12 240) for triglycerides outcome for (A) sedentary behaviour; (B) sleep; (C ) standing; (D) light intensity physical 
activity; (E) moderate to vigorous intensity physical activity. Model adjusted for sex (ref: female), age (ref: 53.7 years; mean-centred), and cohort 
(ref: Maastricht Study)   
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MVPA and cardiovascular outcomes has demonstrated steep risk re-
ductions at low levels of MVPA, with benefits plateauing at higher 
MVPA volumes.49,60,64 This was consistent with MVPA-stratified re-
sults, where reallocation plots indicated greater theoretical benefits 
in those with lower levels of MVPA at baseline. This highlights an in-
creasing need to identify personalized recommendations—or the 
‘sweet spot’65—based on an individual’s current 24 h movement 
behaviours. 

Modelling displacement of time between five key daily behaviours 
can inform design of more realistic lifestyle-based interventions and en-
able personalized behavioural changes. For example, interventions fo-
cusing on displacement between sleep, SB, standing, and LIPA would 
likely require >1 h of daily behavioural change to impact desired out-
comes. This may have limited real-world plausibility compared with 
the potential impacts of displacing an additional ∼5 min in any other be-
haviour into MVPA. Notably, there are promising occupation-based in-
terventions demonstrating the feasibility of reducing SB at this 
magnitude (e.g. standing desks or encourage active commuting via cycle 
to work schemes),66–68 yet interventions targeting non-working aged 
individuals or those in non-desk based roles have demonstrated 
much smaller effects on overall sedentary time.66,67 

Strengths and limitations 
Strengths of this study include the inclusion of 15 000+ participants 
from six cohorts and five countries to increase generalizability of our 
findings; the use of a thigh-mounted accelerometer wear position to 
sensitively capture postural changes; uniform ActiPASS processing of 
raw accelerometer data files; separation of standing from ambulatory 

LIPA; ascertainment of blood-based cardiometabolic biomarkers; and 
the complex compositional data analysis approach that simultaneously 
considered how time spent in different movement behaviours influ-
ences cardiometabolic outcomes. 

There are some limitations that must be acknowledged. First, the 
data are cross-sectional, and therefore causality between movement 
behaviours and outcomes cannot be inferred. Recent mendelian ran-
domization of device-measured activity in UK Biobank suggests causal 
associations between MVPA and adiposity, with bidirectional associa-
tions between SB and adiposity.69 It is clear that there are complex bi-
directional and dynamic associations between movement behaviours 
and cardiometabolic outcomes; therefore, longitudinal follow-up data 
(preferably with repeat measures) is crucial to further investigate these 
associations. Despite clear advances in the ActiPASS-based detection of 
activity intensity and SB, sleep time may have been overestimated as 
time spent in bed rather than biological sleep; nevertheless, previous 
work has suggested strong agreement between our sleep algorithm 
and polysomnography.41 Moderate-vigorous physical activity levels 
were very high in this cohort. This may be due to both specific cohort 
characteristics (e.g. high exercise sample in NES, manual occupation in 
DPhacto, etc.) or high levels of moderate activity classified as MVPA. 

Overall characteristics of the sample and the relatively high levels of 
MVPA indicate that this is a healthy sample. Furthermore, previous evi-
dence suggests that individuals without valid accelerometer data may 
have poorer health, lower socio-economic position, and lower physical 
activity levels than those who wore the device.70 However, previous 
evidence has suggested that poor sample representativeness does 
not necessarily impact the estimates of physical activity with cardiovas-
cular outcomes.71 The MVPA-stratified results suggests we may have 

Figure 6 Substitution models (n = 11 270) for HbA1c outcome for (A) sedentary behaviour; (B) sleep; (C ) light intensity physical activity; (D) moderate 
to vigorous intensity physical activity. Model adjusted for sex (ref: female), age (ref: 53.7 years; mean-centred), and cohort (ref: Maastricht Study)   
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underestimated the benefits of reallocation of behaviour, which appear 
to be greater at lower levels of MVPA. There may be some residual 
confounding; due to differences in measurement protocols between 
studies, some harmonized covariates had lower granularity than the ori-
ginal data collected (e.g. smoking, alcohol, medication use), whilst there 
were some differences in measurement and analysis of outcomes (see  
Supplementary data online, Table S3). Nevertheless, methodologies 
were extremely similar, which allowed the data to be pooled across 
six cohorts and >15 000 participants. We selected established covari-
ates with known associations with movement behaviours and cardio-
vascular outcomes;22–24 however, we recognize that there remains 
some potential for overadjustment; therefore, adjusted estimates 
may underreport true effect sizes. To avoid overadjustment, we did 
not adjust the blood biomarker models for adiposity measures, given 
that adiposity is likely to be on the causal pathway.72 

Conclusions 
This study provides novel evidence of the hierarchy of movement be-
haviours and their impact on cardiometabolic health markers. 
Findings emphasize a key public health message that positive cardiome-
tabolic health outcomes can be most efficiently and feasibly achieved 
with small increases in MVPA. Standing—and for some outcomes 
LIPA—had positive associations with outcomes, although this was 
only observed after displacement of substantial amounts of time. 
Sedentary behaviour was the sole behaviour with clear adverse associa-
tions with outcomes, regardless of duration. Compositional data ana-
lysis sheds novel insights on the complex interplay of 24 h behaviours 
for cardiometabolic health outcomes. Taken together, our results sug-
gest that prioritizing a balance of more time in MVPA and less time in SB 
is the most efficient and effective way to improve and/or maintain good 
cardiometabolic health. 
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